

Putting CO₂ to Work

Charlie Stephens

Northwest Energy Efficiency Alliance
Utility Energy Forum – Santa Rosa, CA

HFC Refrigerants Matter

Phase-outs are Imminent

- Europe is phasing out HFC refrigerants now
 - Depending on end use, phase-out will occur from 2017 through 2022.
 - Many manufacturers (automotive, commercial refrigeration) are choosing CO₂ and/or propane as their new refrigerant.
- U.S. is a couple of years behind Europe
 - But some markets are moving now (e.g. CARB proposal for R-410a phase-out by 2022, Whole Foods).

Refrigerant GWPs

-R-410a (small hvac, HPWH): 2,030

-R-134a (auto AC, ref/frzrs, HPWH): 1,430

-R-404a (groc. & conv. store refrig.): 3,920

-R-507a (commercial refrigeration): 3,990

-R-32 (proposed replacement for R-410a): 675

-R-290 (Propane):

-R-744 (CO₂; auto AC, hvac, refrig., HPWH)

Relevant End Use Equipment

- Water heating/chilling (air-to-water heat pump, R-744 / R-290)
- Space heating/cooling (air-to-water heat pump, R-744 / R-290)
- Grocery store refrigeration (packaged and rack-based; R-290, R-744, cascade systems using more than one refrigerant, including ammonia)
- Vending machines (R-744, R-290, R-600a)

CO₂ as an Alternative

Heating

CO2 heat pump warm water room heater specifications

CO2ヒートポンプ温水暖房機 仕様

Mo	del 形 式	EDS-C110A	
pha	se/volts/hz 源	単相200V 50/60Hz	
	Amps最大電流	25A	
Design Heating Capacity	(1) 定格加熱能力※1	3.5kW	
gn Electricity Consumpt	。n(1)定格消費電力※1	0.80kW	
nergy Efficiency(1)	エネルギー消費効率※1	4.3 COP?	
Heating Capacity (2)	加熱能力※2	11.0kW	
Max Power Consumption	(2) 最大消費電力※2	4.0kW	
sti Freezing Wattage	ドレン凍結防止ヒーター	O.1kW	
perating Noise	運転音	47dB	
External Dimensions	外形寸法(H×W×D)	1280×828×283mm(突起部除く)	
Weight	製品質量	98kg	
refrigerant	使用冷媒	R744(CO₂)	
Design Water Temp.	温水温度設定	45℃~70℃の3段階 (3 stage)	
rm Water Connection Fit	ing 温水配管接続口	R3/4	

※1.外気温7°C/6°C (DB/WB) 入水温度23°C
※2.外気温7°C/6°C (DB/WB) 入水温度30°C

Refrigeration

^{1.} Outdoor temp 7 deg C/6 deg C (DB/WB) , supply water 23deg C

^{2.} Outdoor temp7 deg C/6 deg C (DB/WB) , supply water 30deg C

Natural Refrigerant Energy Savings

Heating (CO₂)

- High COPs (4.0 6.0)
- Cold-climate capable (down to -25F OAT)
- Can make very hot water (up to 195 F)
- Split system, so no impact on indoor environment
- High system pressures (~1,450 psi)
- Energy storage

Cooling (R-290)

- Modestly to much better efficiency (20-30% better than HFC-based systems)
- Non-transcritical CO₂
 systems not so capable at very high ambient air temperatures (above 80F);
 R-290 should fill this gap
- Typically packaged systems
- More modest system pressures (~400 psi for propane and nontranscritical CO₂)

Climate-Responsive Space & Water Heating

Work in Which NEEA is a Partner

- Extensive lab testing of packaged and split CO₂
 DHW systems (2013 2014)
- Field tests of 4 split CO₂ DHW systems (late 2013 to present; one 8,800 DD site in Montana)
- Field tests of 9 combined space & water heating systems (CO₂ split systems, late 2014 to present)
- Lab & field tests of new 11 kW (35 kBtu/hr) combined space & water heating systems (2016/17)
- Investigation of grocery refrigeration system conversion (Whole Foods, Target) (2016/17)

HPWH Performance

kWh per 100 gallons water delivered

Note: Performance for CO₂ sites is for cold weather months only; other sites are annual.

Output

- SandenGES 30F Cap
- SandenGES 50F Cap
- SandenGES 67F Cap

Efficiency

- SandenGES 30F FullCFM COP
- SandenGES 67F FullCFM COP
- SandenGES 50F FullCFM COP

Performance vs. Temperature

Outside Air Temperature (F)	Energy Factor (EF)	СОР	Output Capacity (kW)	Input Power (kW)
17	1.74	2.1	4.0	1.9
35	2.21	2.75	3.6	1.3
50	3.11	3.7	4.0	1.1
67	3.35	4.2	4.1	0.97
95	4.3	5.0	4.6	0.93

- Linear fit of EF to temperature
- Use TMY temperature bins to calculate an annual EF:

Climate	Annual EF	
Boise	2.9	
Kalispell	2.6	
Portland	3.0	
Seattle	2.9	
Spokane	2.8	

1.25-ton SanCO₂

- UL-listed
- Two tank sizes (40-, 80-gal)
- Became available July 2016

 Can be used in a combined space & water heating system, but heating loads must be small

3-ton Eco Runo

- Completed lab-testing phase
- Configured for space heating
- Can do sidearm water heating

Combined System Configuration

Field Performance – 1.25-ton

Field Performance - 3-ton

Controls

Next Steps

- Install 6 forced air combined systems & monitor for 15 months
- Complete new test & rating procedures
- Acquire 4-ton systems for combined heating, cooling & DHW
 - Low-pressure stage likely to use R-290 (chilled water and first stage hot water)
- Develop a program for replacing electric forced air and electric resistance water heating in existing homes

Thank you!

Charlie Stephens cstephens@neea.org

Together We Are Transforming the Northwest

